AIRE encodes a nuclear protein co-localizing with cytoskeletal filaments: altered sub-cellular distribution of mutants lacking the PHD zinc fingers.

نویسندگان

  • C Rinderle
  • H M Christensen
  • S Schweiger
  • H Lehrach
  • M L Yaspo
چکیده

The gene responsible for autoimmune polyendocrino-pathy candidiasis ectodermal dystrophy (APECED) recently has been positionally cloned to 21q22.3. This novel gene, AIRE, encodes for a predicted 57.7 kDa protein featuring two PHD-type zinc fingers shared by other proteins involved in chromatin-mediated tran-scriptional regulation. APECED is an autosomal recessive condition characterized by multiple polyendocrinopathies, and the typical triad of APECED symptoms includes hypoparathyroidism, primary adrenocortical failure and chronic mucocutaneous candidiasis. The aetiology of APECED is linked directly to mutations within the coding region of AIRE. These mutations are predicted to lead to truncated forms of the protein lacking at least one of the PHD zinc fingers. In this study, we have investigated the sub-cellular localization of AIRE expressed transiently in COS cells and fibroblasts. We found that AIRE has a dual nuclear and cytoplasmic localization. The wild-type protein is directed to speckled domains in the nucleus and also shows co-localization with cytoskeletal filaments. N-terminal AIRE fragments deleted for the PHD domain show altered nuclear localization, suggesting that the APECED mutations may elicit their primary effects in the nucleus.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AIRE-PHD fingers are structural hubs to maintain the integrity of chromatin-associated interactome

Mutations in autoimmune regulator (AIRE) gene cause autoimmune polyendocrinopathy candidiasis ectodermal dystrophy. AIRE is expressed in thymic medullary epithelial cells, where it promotes the expression of peripheral-tissue antigens to mediate deletional tolerance, thereby preventing self-reactivity. AIRE contains two plant homeodomains (PHDs) which are sites of pathological mutations. AIRE-P...

متن کامل

Exploring PHD Fingers and H3K4me0 Interactions with Molecular Dynamics Simulations and Binding Free Energy Calculations: AIRE-PHD1, a Comparative Study

PHD fingers represent one of the largest families of epigenetic readers capable of decoding post-translationally modified or unmodified histone H3 tails. Because of their direct involvement in human pathologies they are increasingly considered as a potential therapeutic target. Several PHD/histone-peptide structures have been determined, however relatively little information is available on the...

متن کامل

The solution structure of the first PHD finger of autoimmune regulator in complex with non-modified histone H3 tail reveals the antagonistic role of H3R2 methylation

Plant homeodomain (PHD) fingers are often present in chromatin-binding proteins and have been shown to bind histone H3 N-terminal tails. Mutations in the autoimmune regulator (AIRE) protein, which harbours two PHD fingers, cause a rare monogenic disease, autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED). AIRE activates the expression of tissue-specific antigens by directly...

متن کامل

FILAMENTOUS FLOWER, a meristem and organ identity gene of Arabidopsis, encodes a protein with a zinc finger and HMG-related domains.

Distinctive from that of the animal system, the basic plan of the plant body is the continuous formation of a structural unit, composed of a stem with a meristem at the top and lateral organs continuously forming at the meristem. Therefore, mechanisms controlling the formation, maintenance, and development of a meristem will be a key to understanding the body plan of higher plants. Genetic anal...

متن کامل

The autoimmune regulator PHD finger binds to non-methylated histone H3K4 to activate gene expression

Mutations in the gene autoimmune regulator (AIRE) cause autoimmune polyendocrinopathy candidiasis ectodermal dystrophy. AIRE is expressed in thymic medullary epithelial cells, where it promotes the expression of tissue-restricted antigens. By the combined use of biochemical and biophysical methods, we show that AIRE selectively interacts with histone H3 through its first plant homeodomain (PHD)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Human molecular genetics

دوره 8 2  شماره 

صفحات  -

تاریخ انتشار 1999